Extensions 1→N→G→Q→1 with N=C23×C30 and Q=C2

Direct product G=N×Q with N=C23×C30 and Q=C2
dρLabelID
C24×C30480C2^4xC30480,1213

Semidirect products G=N:Q with N=C23×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C23×C30)⋊1C2 = C15×C22≀C2φ: C2/C1C2 ⊆ Aut C23×C30120(C2^3xC30):1C2480,925
(C23×C30)⋊2C2 = D4×C2×C30φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30):2C2480,1181
(C23×C30)⋊3C2 = C245D15φ: C2/C1C2 ⊆ Aut C23×C30120(C2^3xC30):3C2480,918
(C23×C30)⋊4C2 = C22×C157D4φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30):4C2480,1179
(C23×C30)⋊5C2 = C24×D15φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30):5C2480,1212
(C23×C30)⋊6C2 = C3×C242D5φ: C2/C1C2 ⊆ Aut C23×C30120(C2^3xC30):6C2480,746
(C23×C30)⋊7C2 = C2×C6×C5⋊D4φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30):7C2480,1149
(C23×C30)⋊8C2 = D5×C23×C6φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30):8C2480,1210
(C23×C30)⋊9C2 = C5×C244S3φ: C2/C1C2 ⊆ Aut C23×C30120(C2^3xC30):9C2480,832
(C23×C30)⋊10C2 = C2×C10×C3⋊D4φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30):10C2480,1164
(C23×C30)⋊11C2 = S3×C23×C10φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30):11C2480,1211

Non-split extensions G=N.Q with N=C23×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C23×C30).1C2 = C22⋊C4×C30φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30).1C2480,920
(C23×C30).2C2 = C2×C30.38D4φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30).2C2480,917
(C23×C30).3C2 = C23×Dic15φ: C2/C1C2 ⊆ Aut C23×C30480(C2^3xC30).3C2480,1178
(C23×C30).4C2 = C6×C23.D5φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30).4C2480,745
(C23×C30).5C2 = Dic5×C22×C6φ: C2/C1C2 ⊆ Aut C23×C30480(C2^3xC30).5C2480,1148
(C23×C30).6C2 = C10×C6.D4φ: C2/C1C2 ⊆ Aut C23×C30240(C2^3xC30).6C2480,831
(C23×C30).7C2 = Dic3×C22×C10φ: C2/C1C2 ⊆ Aut C23×C30480(C2^3xC30).7C2480,1163

׿
×
𝔽